Double multiple-relaxation-time model of lattice-Boltzmann magnetohydrodynamics at low magnetic Reynolds numbers
نویسندگان
چکیده
We develop an improved lattice-Boltzmann numerical scheme to solve magnetohydrodynamic (MHD) equations in the regime of low magnetic Reynolds numbers, grounded on central-moment (CM) and multi-relaxation-time (MRT) collision models. The simulation induction equation within approach MHD has been usually devised along lines simplest phenomenological description—the single relaxation time (SRT) model complete equation. In order deal with well-known stability difficulties SRT framework for larger scales, we introduce, alternatively, a MRT technique solution equation, which proves be efficient extending domain applicability method problems. also put forward novel practical boundary condition cope subtleties Boltzmann-like distributions curved boundaries. As supporting applications, discuss performance CM–MRT algorithm describe complex dynamics 3D Orszag–Tang vortex problem open issues related transient flow regimes pipe flows, subject uniform non-uniform fields.
منابع مشابه
Lattice Boltzmann model for resistive relativistic magnetohydrodynamics.
In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in th...
متن کاملSimulation of Lid Driven Cavity Flow at Different Aspect Ratios Using Single Relaxation Time Lattice Boltzmann Method
Abstract Due to restrictions on the choice of relaxation time in single relaxation time (SRT) models, simulation of flows is generally limited base on this method. In this paper, the SRT lattice Boltzmann equation was used to simulate lid driven cavity flow at different Reynolds numbers (100-5000) and three aspect ratios, K=1, 1.5 and 4. The point which is vital in convergence of this scheme ...
متن کاملSingle relaxation time model for entropic lattice Boltzmann methods.
For lattice Boltzmann methods based on entropy functions, we derive a collision integral which enables simple identification of transport coefficients, and which circumvents construction of the equilibrium. Implementation of the two-dimensional hydrodynamics demonstrates considerable increase of stability with respect to conventional lattice Boltzmann schemes.
متن کاملUnsteady Aerodynamic Performance of Model Wings at Low Reynolds Numbers
The synthesis of a comprehensive theory of force production in insect flight is hindered in part by the lack of precise knowledge of unsteady forces produced by wings. Data are especially sparse in the intermediate Reynolds number regime (10<Re<1000) appropriate for the flight of small insects. This paper attempts to fill this deficit by quantifying the time-dependence of aerodynamic forces for...
متن کاملNoisy swimming at low Reynolds numbers.
Small organisms (e.g., bacteria) and artificial microswimmers move due to a combination of active swimming and passive Brownian motion. Considering a simplified linear three-sphere swimmer, we study how the swimmer size regulates the interplay between self-driven and diffusive behavior at low Reynolds number. Starting from the Kirkwood-Smoluchowski equation and its corresponding Langevin equati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics of Fluids
سال: 2023
ISSN: ['1527-2435', '1089-7666', '1070-6631']
DOI: https://doi.org/10.1063/5.0135516